Additive World Conference II
March 27th 2014

Lucy Grainger
Disclaimer

This presentation includes certain projections and forward-looking statements provided by the Company with respect to the anticipated future performance of the Company. Such projections and forward-looking statements reflect various assumptions and expectations of management concerning the future performance of the Company, and are subject to significant business, economic, political and competitive uncertainties and contingencies, many of which are beyond the Company’s control. Accordingly, there can be no assurance that such projections and forward-looking statements will be realised. The actual results may vary from the anticipated results, and such variations may be material. Each forward-looking statement or projection speaks only as of the date of that particular statement or projection. The Company, and its directors, officers and employees, make no representation or warranty in relation to whether such projections or forward-looking statements are achieved or realised and accept no responsibility and disclaim all liability in respect of the same.
Introduction
Metalysis background

• Based in South Yorkshire in the UK, currently around 40 employees

• Metalysis has developed a unique technology originally based on the FFC® Process invented at the University of Cambridge, UK

• The technology is capable of producing a vast range of metal powders for use in conventional and additive manufacturing at substantially lower cost

• Capable of producing metals for a range of niche and volume markets, including aerospace, electronics, biomedical, petro-chemical and automotive

• Based on 10 years of R&D effort Metalysis has built a small industrial facility in the UK to demonstrate tantalum & titanium production

• 25 live, published families of patents originally based on the FFC® approach – substantially developed

• Iluka resources have recently invested £12m into the company for development of Ti powders for additive manufacturing
• Electrolysis processes are regarded as highly efficient
• Relatively low temperature operation and lower energy consumption
• Inexpensive components for electrolysis – cheap, readily available salt and carbon
• No toxic gases used
• Powder feed to powder product
Background - disruptive impact across periodic table
Combining elements through powder metallurgy to create novel alloys opens up new possibilities for markets and applications

The Metalysis process can be a key enabler for this process
Background – initial focus on two core products

- Metalysis has chosen to focus initially on two metals, tantalum and titanium
- Tantalum is the initial entry market as it is specialist, low volume and high margin

PHASE 1:
- High value metal - annual volumes of 2,500 tonnes in a market worth over $2 billion
- Powder prices range from $500 – 2,000/kg
- Mainly produced by the Hunter process
- Substantial margin opportunities – a viable business in its own right
Background – initial focus on two core products

- Metalysis has chosen to focus initially on two metals, tantalum and titanium
- Tantalum is the initial entry market as it is specialist, low volume and high margin
- Titanium is a larger market which could be transformed by the introduction of a low-cost production process

PHASE 1:
- High value metal - annual volumes of 2,500 tonnes in a market worth over $2 billion
- Powder prices range from $500 – 2,000/kg
- Mainly produced by the Hunter process
- Substantial margin opportunities – a viable business in its own right

PHASE 2:
- High value metal - annual volumes of ~170 ktpa in a market worth over $10 billion
- Powder prices range from $200-400/kg
- All titanium is produced by the Kroll process
- Current market size is constrained by the cost of the metal, poised to expand rapidly if the cost can be lowered
- A significant value opportunity
• 25 live, published families of patents originally based on the FFC® approach – substantially developed

• Patents cover all aspects of the process from feedstock, preparation of the oxide, reduction parameters, cell design, post processing and bespoke ancillary services

• Core patent has been filed in over 50 countries

• Combined IP now inclusive of portfolios from
 – Cambridge University - FFC®
 – Qinetiq -EDO ®
 – BHP Billiton – Polar ®
 – Metalysis

• A suite of next generation patents filed that deliver extended IP protection
Background – current investors

www.chordcapital.co.uk
www.etf.eu.com
www.bhpbilliton.com
www.sevenspires.co.uk
www.djespirit.com
www.lluka.com
Iluka Resources

- Market capitalisation of ~$4 billion
- One of the top 5 Australian resource companies
- Operations in Australia and the US
- Largest producer of zircon in the world, 30% market share
- Second largest producer of titanium dioxide minerals

Source: Iluka Resources
Phase 2 – Global titanium markets

- High value metal - annual volumes of ~170,000 tonnes in a market worth over $10 billion
- The market for additive manufacturing is currently worth over $1 billion and is growing at 20% CAGR. The market for powders is expected to grow to ~$30 billion by 2025
- Additive manufacturing grade titanium powder prices range from $200-400/kg
- Target markets for titanium powders
 - Aerospace grade
 - Demand from the aerospace industry remains strong due to use of composites and drive for fuel efficiency
 - Metalalysis has developed a unique powder product derived directly from either a ore feedstock, or high grade ‘pigment’ sources
 - Industrial grade
 - Used in the petrochemical, desalination and medical industries
 - Current market size is constrained by the cost of the metal, poised to expand rapidly if the cost can be lowered
- A significant value opportunity

Source: Roskill, ITA, SMR
Halving the price of aluminium has generated at least a ten-fold volume growth for aluminium.

Source: USGS, European Aluminium Association
Titanium ore $0.6/kg

$TiCl_4$ $1.5/kg

$Kroll$ sponge $11-15/kg

Ingot $25/kg

Billet $40/kg

Mill products $50-70/kg

Ti powder $200-400/kg

TiO_2 pigment $3.2/kg

Significant potential for reducing titanium processing costs

Titanium powder could replace mill products and enables near net shape production and 3D printing
Titanium product development

- 2010: PIGMENT, HONEYCOMB PRE-FORM, HONEYCOMB PRODUCT, SPONGE SUBSTITUTE, POWDER
- 2011: PIGMENT, BEAD, SPONGE SUBSTITUTE
- 2012: PIGMENT, GRANULE, POWDER
- 2013: DIRECT ORE, POWDER, 3D PRINTED PART
Potential for metal powder direct from Ore

- Metalysis rutile possesses a tensile strength greater than commercially pure grades (ASTM 1 – 4) of titanium, is equivalent to a weldable armour plate for defence applications, and is ca. 80% that of Ti-6Al-4V (ASTM grade 5).

MIL = MIL-DTL-46077G – Department of Defense, Detail Specification, Armor Plate, Titanium Alloy, Weldable
Additive Manufacturing (3D Printing)

- Metalysis can generate spherical powders in the different size ranges that are currently used in additive manufacturing (3D printing), i.e. typically 45 to 150µm.
- In the Metalysis process a relationship exists between the particle size of the feed and ensuing product, therefore this can be tailored to meet specific customer requirements whilst generating a high yield.

![Metalysis 3D Printing Machine](image1)

![Graph](image2)

![Images of 45 to 75, 75 to 106, and 106 to 150 micron powders](image3)
Metalysis powders have been used to 3D print titanium parts
Why Reduce Material Cost?

- Currently, machine cost, which includes depreciation, servicing, and consumables, is the major cost in metal additive manufacturing closely followed by material cost.

- As machine costs are reduced over time, materials will become the new major contributor if costs remain as they are, typically $200-400/kg for Ti.
Summary
Summary

- Metalysis has developed a unique technology originally based on the FFC® Process, which will be exploited for tantalum production during Phase 1 and titanium powder production in Phase 2.

- Metalysis has an extensive patent portfolio of 25 patent families that is continually being expanded.

- Metalysis has recently completed an investment round with Iluka Resources, who are one of the largest titanium feedstock producers in the world.

- Metalysis have demonstrated spherical Ti powders for additive manufacturing applications and are able to tailor the PSD and chemical composition depending on the end users requirements.

- Potential to recycle titanium powders that have been used in additive manufacturing.

- Our vision is to create new low-cost titanium alloy powders that can expand the market beyond aerospace, biomedical and specialist chemical engineering uses.